Задачи сопротивления материалов

При проектировании сооружений и машин инженеру приходится выбирать материал и поперечные размеры для каждого элемента конструкции так, чтобы он вполне надежно, без риска разрушиться или исказить свою форму, сопротивлялся действию внешних сил, передающихся на него от соседних частей конструкции, т. е. чтобы была обеспечена нормальная работа этого элемента. Основания для правильного решения этой задачи дает инженеру наука о сопротивлении материалов.

Эта наука изучает поведение различных материалов при действии на них сил и указывает, как подобрать для каждого элемента конструкции надлежащий материал и поперечные размеры при условии полной надежности работы и наибольшей дешевизны конструкции.

Иногда сопротивлению материалов приходится решать видоизмененную задачу- проверять достаточность размеров уже запроектированной или существующей конструкции.

Требования надежности и наибольшей экономии противоречат друг другу. Первое обычно ведет к увеличению расхода материала, второе же требует снижения этого расхода. Это противоречие является важнейшим элементом научной методики, обусловливающей развитие сопротивления материалов.

Часто наступает момент, когда существующие материалы и методы проверки прочности не в состоянии удовлетворить потребностям практики, ставящей на очередь решение новых задач (в наше время сюда относятся использование больших скоростей в технике вообще, в воздухоплавании в частности, перекрытие больших пролетов, динамические задачи и др.). Тогда начинаются поиски новых материалов, исследование их свойств, улучшение и создание новых методов расчета и проектирования. Прогресс науки о сопротивлении материалов должен поспевать за общим прогрессом техники.

В некоторых случаях инженеру, помимо основных требований — надёжности и наибольшей экономии, — приходится при выполнении конструкции удовлетворять и другим условиям, например, требованиям быстроты постройки (при восстановлении разрушенных сооружений), минимального веса (при конструировании самолетов) и т. п.

Эти обстоятельства также отражаются на выборе материала, размеров и форм частей конструкции.

Начало развития сопротивления материалов как науки иногда относят к 1638 г. и связывают с именем Галилео Галилея, знаменитого итальянского ученого. Галилей был профессором математики в Падуе. Он жил в период разложения феодального строя, развития торгового капитала, международных морских сношений и зачатков
горной и металлургической промышленности.

Новая экономика того времени поставила на очередь решение ряда новых технических проблем. Оживление внешних торговых сношений поставило задачу увеличения тоннажа судов, а это повлекло за собой необходимость изменения их конструкции; одновременно стал вопрос о реконструкции и создании новых внутренних водных путей сообщения, включая устройство каналов и шлюзов. Эти технические задачи не могли быть решены простым копированием существовавших раньше конструкций судов и сооружений; оказалось необходимым научиться путем расчета оценивать прочность элементов конструкции в зависимости от их размеров и величины действующих на них нагрузок.

Значительная часть работ Галилея была посвящена решению задач о зависимости между размерами балок и других стержней и теми нагрузками, которые могут выдержать эти элементы конструкции. Он указал, что полученные им результаты могут «принести большую пользу при постройке крупных судов, в особенности при
укреплении палуб и покрытий, так как в сооружениях этого рода легкость имеет огромное значение». Исследования Галилея опубликованы в его книге c:Discorsi е Dimostrazioni matematiche:. (1638, Лейден, Голландия).

Дальнейшее развитие сопротивления материалов шло параллельно развитию техники строительства и машиностроения и связано с целым рядом работ выдающихся ученых-математиков, физиков и инженеров.
Среди них значительное место занимают русские и советские ученые.

Большой вклад в науку о сопротивлении материалов внес в XVIII веке действительный член Петербургской Академии наук Леонард Эйлер, решивший задачу об устойчивости сжатых стержней.

В XIX веке мировую известность приобрели работы Д. И. Журавского и Х. С. Головина. В связи с проектированием и постройкой ряда мостов на строившейся Николаевской, ныне Октябрьской, железной дороге между Петербургом и Москвой Д. И. Журавский решил ряд важных и интересных вопросов, связанных с прочностью балок при их изгибе. Х. С. Головин впервые правильно решил задачу
о прочности кривых стержней. В мировую науку прочно вошли работы Ф. С. Ясинского по вопросам устойчивости элементов конструкций, вызванные к жизни изучением причин разрушения некоторых мостов. Проф. П. И. Собко организовал крупнейшую лабораторию по испытанию материалов в Петербургском институте инженеров путей сообщения.

С начала ХХ века роль русских учёных в сопротивлении материалов стала ведущей. Проф. И. Г. Бубнов явился основоположником современной науки о прочности корабля. Академик А. Н. Крылов, помимо дальнейшего развития задач о расчете корабля, известен крупнейшими исследованиями в области динамических расчетов. Проф. Н. П. Пузыревский создал новую методику расчета балок на упругом основании.

Из многочисленных трудов академика Б. Г. Галёркина достаточно упомянуть работы по развитию вариационных методов механики, общему решению пространственной задачи теории упругости и расчту плит. Многих вопросов расчета на прочность касались и работы С. П. Тимошенко.

В советское время передовая роль нашей страны закрепилась еще в большей степени. Продолжали работать академики А. Н. Крылов и Б. Г. Галёркин. Академик А. Н. Динник опубликовал ряд крупных работ по устойчивости элементов конструкций. Проф. Н. М. Герсеванов плодотворно работал в области механики грунтов, науки, решающей задачи прочности и устойчивости оснований и фундаментов сооружений и машин.

Профессора П. Ф. Папкович и Ю. А. Шиманский стали во главе школы ученых, занимающихся вопросами прочности кораблей. Проф. Н. Н. Давиденков создал, совместно со своими учениками, новую теорию, объясняющую причины разрушения материалов. Большое значение имеют и его труды по вопросам динамической прочности и разрушения при ударе. Усилиями наших инженеров разработана новая теория расчета железобетонных конструкций, которая более правильно, чем теории, принятые за границей, отражает действительный характер
работы этих конструкций: и при обеспеченной прочности дает значительную экономию размеров .

Академик Н. И. Мусхелишвили развил современные методы теории функций комплексного переменного и теории сингулярных интегральных уравнений и применил их к решению ряда задач. Проф. В. 3. Власов создал новую оригинальную теорию расчета тонкостенных оболочек и тонких стержней, имеющих широкое применение в различных конструкциях.